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Introduction presence of small (but not zero) variable acceleration
fields during orbital flight will set up slow thermal

The first Materials Processing in Space (MPS) convective currents in the liquid. Since the magnitude
experiment scheduled by NASA for a Spacelab flight and location of these currents can adversely affect the
will investigate the production of more homogeneous quality of the growing crystal, it is important to have
crystals, free from inclusion of solution, by suppression some advance quantitative estimate of these.
of thermal convection because of the almost 0-g

environment. This experiment, being monitored at Approximate Analytical Method
NASA-Marshall Space Flight Center has Drs. R. B.
Lal, R. L. Kroes, and W. Wilcox as principal investiga- Before a complete computational analysis finally
tors, and will be flown in the Fluids Experiment System will become available for this problem, we have made
(FES), scheduled for Spacelab 3. the following rough preliminary theoretical analysis in

A crystal oftriglycine sulfate (TGS) will be grown at terms of known analytical solutions for convection in
the center of a cubical box containing liquid. This cube much simpler models. Analytical solutions were already
is 10 cm on a side, and its walls are held at a fixed available for 2-dimensional (2-D)steady convection in

temperature Tn. The growing TGS crystal, which we a square (Batchelor [1]) and in a circle (Weinbaum
specify here to have 1 cm 3 volume (its approximate [2]), and for the transient solution for a circle (Dressier
shape whether taken as a cube or sphere, etc. not being [3]) in which it was indicated that the transient and
of much significance for this analysis) is held at the steady solutions for the circle were also applicable to
center of the cubical container by a support attached to the major central region of a square of equal area.
the center of one face (Fig. 1). The support carries a Although the TGS configuration is a much more
cooling system which maintains the crystal at a fixed complicated geometry and produces 3-D flow, a rough
temperature Tc which is 10°C less than the fixed wall estimate can nevertheless be made which will be
temperature Tn. This temperature difference ATin the described here. If any such estimates get within even

one order-of-magnitude of the true velocities, it is

helpful for advanced planning of the experiment.

/ w..o..,..r....,,,..,..,,.A small acceleration e(t)g directed downwards whereI
I e(t) may define any time-variation. It was shown in [3]
I _iii::i that a transient convective response to any e(t)g can be

I _ obtained by appropriate combination of the basic

I transient due to a step-function acceleration. We will

I show furthermore that we will require an estimate only

for the basic step-function transient for the TGS cell.One notes in Fig. 1 that the convection will be slightly
different depending upon the orientation of the eg

,,t. vector, due both to the cubical geometry of the cell, and
/" also to the small barrier created by the support rod for

/,, the crystal. Our first simplification will be to ignore this
/ support. Secondly, since it is known that at low Ray-

,,/ leigh numbers convection in a square, except close to
the corners, is almost identical with convection in a1000 cm 3 cube

(Hot walls at T.} circleofequalarea([1],[2],and [3]),byanalogywe will

1 cm 3 cold crystal at therefore replace the cubical cell by a spherical cell of
Tc = T, --10° C equal volume. If we now consider the small crystal to

be a sphere of 1 cm 3 volume, we see (Fig. 2) that the
e(t)g flow pattern will be identical for any fixed orientation 0f

Figure 1.--Three-dimensional convection in Spacelab MPS the eg vector. We therefore can take it downward in
experiment. Fig. 2 without loss of generality. The flow pattern for
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Figure 2.--Spherical container of equal volume. E
/

tl_is fixed eg will be rotationally symmetric with respect
to the vertical diameter BOE, and can then be studied eg

in the semicircular plane area BOED (Fig. 3). Figure 3.--Streamlines ofrotationally symmetric flow in any
In [3] there was automatic linearization of the basic planar section of the sphere.

equations due to the 2-D circular symmetry. In the Fig.
2 case, however, the basic 3-D equations are not linear
for the symmetric flow, but we can linearize them shape, in our case a single circulation pattern as shown
because of the very low velocity in this problem. Thus, in Fig. 3. This flow must be counterclockwise since the
only the step-function solution for Fig. 2 will be needed left boundary BOE is cooler than the boundary BDE.
to solve for any transient, by forming appropriate linear For equal spherical and cubical volumes OD ----6.2 cm
combinations with phase lags, as demonstrated in [3]. and the area for the semicircular domain is A = 60

Although all quantities could easily be put into cm 2. Although the flow may be visualized in the typical
dimensionless form, we will retain dimensions in order plane BOED, it is of course rotationally symmetric, not
to describe the specific cell, crystal size, and tempera- two-dimensional. Our procedure in this approximate
ture difference in this experiment. The magnitude ofeg analysis, however, will be to consider first a 2-D flow in

could be taken arbitrarily for the step-function acceler- BOED, then later this flow will be geometrically
ation, subject only to the condition that the Rayleigh modified to account appi'oximately for the 3-D rota-
number remains small in order to guarantee validity of tional symmetry in the sphere.
our analytical solutions to be used (see [3] where an We return now to considering the crystal as a cube of
upper limit of 6500 was imposed for steady state). We 1 cm 3 volume, and therefore consider a slab slightly
will specify eg = 10-6 g which corresponds, for exam- thicker than 1 cm (in order to enclose fully the half-cube
pie, to the effect of a strong aerodynamic drag on the representing half the crystal) with the semi-circular
Shuttle in orbit. The flow velocities for any other value cross-section BOED, inside which we now consider a
can be obtained immediately since they are directly strictly 2-D flow (Fig. 4). The half-cube crystal is held
proportional to the acceleration in this range. For MPS at temperature Tc while the semicircular lateral surface

experiments the Rayleigh numbers are usually very is at Tit where Ttt -- Tc = 10°C. The flat surfaces on
low. In such cases convection patterns take the simplest the left boundary above and below the crystal are not
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Figure 4.--Replacement of semicircular domain by a square.

material boundaries, but consist of liquid which by replace the variable temperature distribution on the

symmetry cannot flow through these areas, but only entire left bounding surface (including all five faces of
parallel to them. In convection problems for very low the crystal half-cube) by its average value and still
Rayleigh numbers, it was shown in [3] that it is retain thesametotalheatflux.Acalculationusingboth
sufficient to approximate the thermal field in the (1) and (2)gives

moving liquid by the undisturbed thermal field if there
were no convection. The undisturbed thermal field in ATav = --3.3°C (on total left boundary). (3)

our spherical model (Fig. 2) consists of concentric
spheres for the isothermal surfaces, and with the In addition to the previously noted interchangeabil-
temperature varying inversely with radial distance ity of a square and circle, not only for steady convection
from the center. The constant temperature distribution but also for the transients (Robertson & Spradley [4]),
on these left boundaries is therefore known and given it has been observed much more generally (Spradley

approximately by [5]) that for equal areas and the same AT imposed
across the width, any specific geometric shape of the

AT = 0.88 -- 5.44/r °C (1) enclosure is, within reasonable bounds, only of slight
importance upon the 2-D convection in the central

while the lateral surfaces of the crystal are at region. We therefore replace the semicircular slab
(which now has a constant temperature difference

AT = - 10°C. (2) ATav imposed upon its entire left boundary surface) by
a square slab with equal face area (60 cm 2) as shown

Since the total heat flux through the cell is the in Fig. 4. In both slabs, the front and rear faces are not
excitation driving the thermal convection, we can next material boundaries and exert no drag upon the 2-D

3
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Figure 5.--Two-dimensional thermal convection in square and equivalent circle.

flows. For a more precise replacement the upper and velocity is at the locations r/a = +__0.58 and these
lower edges of the square slab should be held at TH locations are designated by PI and P2.
also, but it is known from many calculations ([4] and The 2-D transient solution for a step-function eg

[5]) that the thermalboundary conditions onupper and applied at t = 0 for the circle [3] is
lower edges play only a minor role in the central
convection, compared with the temperatures imposed

upon the vertical edges. Thus, if we allowthe imposed @(r,t)=egc°sgbApaa[ r _ (r) 3temperatures on the horizontal sides to be linearly 16 p v
varying between the two vertical sides, we have now

( v)]produced a square model with a known solution [11for _'_Jx(X,r/a) --X2 _'_ t (4)the steady convection, and with an accurate approxi- + 16 _ _ exp .
mate solution also known for the transient convection 1

[4]. In the above argument, it would be more precise for
a 2-D flow in the Figure 4 model to have taken a which is likewise almost identical [4] with the 2-D
narrower slab which excludes the front and back faces transient velocity along a major axis of a square of

of the crystal. These were incuded, however, in the equal area. Here 2Ao is the density difference over the
calculation for the result (3) to compensate for the width of the enclosure, and An is the n-th root of the
neglect of the "slip" boundary condition on the left Bessel function Jl(x). The half-time build-up is given
boundary above and below the crystal. A more lengthy approximately by the exponential in the first term with
analysis which excludes the two crystal faces but e -l, and is
introduces the "slip" condition yields essentially the
same final result for convective velocities along OD, t_ = O.068a2/v. (5)

and is therefore omitted for brevity.

Along either major axis of a square and along any For our TGS liquid, viscosity v = 1.5 )< 10 .2 cm2/sec,
radius of a circle, if r/a is the dimensionless distance the thermal expansion coefficientfl = 2.07 X 10-4/°C,
from the center, the steady convective velocity varies thermal diffusivity K = 1.24 X 10 .3 cm2/sec, and the
as the quantity r/a -- (r/a) 3 as shown in Fig. 5, and (equal-area) circle radius is a = 4.37 cm, giving
with the velocities at corresponding points equal in

magnitude when the face areas are equal. Maximum t_ = 84 secs. (6)

4



At steady 2-D flow (4) gives must be multiplied by the factor 2.5, and by the factor
0.63 at P_. Approximate 3-D results therefore for the

vSs(Pl and P2) = 0.1 micron/see. (7) rotationally symmetric flow for Figs. 2 and 3 are, using
(7) for the steady flow,

We now identify the known 2-D flow in the central
region of the square model in Figs. 4 and 5 with the 2-D usesx = vSS(p_) = 0.25 micron/sec. (8)
flow in the central region of the semicircular slab of
equal face area shown on the left side of Fig. 4. We vSS(p_) = 0.064 micron/see. (9)
temporarily disregard the projecting crystal, and identify
the points P], C', and P'2on the line OD in Figs. 3 and 4 To obtain the transient flow as a function of t, for the
to correspond to PI, C, and P2 in Fig. 5, with C' at the step function at any point such as P], we multiply the
center of OD, and withP] andP_ at 0.58 ofthedistance transient curve for the circle [3] evaluated at the corres-
from C' to O and to D, respectively, ponding point by the appi'opriate geometrical factor at

These velocities refer of course to purely 2-D flow. every time value. For example, the result atP] is shown
The final step is to adjust approximately these 2-D in Fig. 7, as the dashed curve.
results by a geometrical consideration to apply to the Our reasoning above is somewhat related to that
rotationally symmetric flow in the model of Fig. 2. If we used in the theory of Kinematic Waves (Lighthill &
pass a horizontal plane containing OD through the Whitman [7], Whitman [8]). In thattheorythe solution
sphere of Fig. 2, and look down at a wedge-shaped is obtained by solving only the mass conservation
section on this plane (Fig. 6), we note that the width of equation, without coupling the dynamical equation
the cross-section of any streamtube must, because of with it. Instead, a known relation must be employed
the rotational symmetry, vary linearly with its distance (the "density vs. flux" relation) which replaces the
from the point of the wedge. Since the width of any solution to the exact dynamical equation. In our
streamtube cross-section is constant in the 2-D flow approach, the wedge flow is obtained from the mass
inside our slab of constant width (dashed lines in Fig. equation by using a previously obtained result from
6), we consider the geometrical effect due to mass other approximate dynamical considerations.
conservation on the established and known 2-D flow if "It is obvious that our above geometrical approach

we now distort this flow by rotating the two walls FG will not remain valid when the weighting factor departs
and HK about the points M and N, respectively, in widely from unity, i.e., in the region of the sharp point
order to create the wedge domain QOR. The resulting of the wedge, where the factor goes towards infinity.
section of a rotationally symmetric flow must have There the resulting gradients and stresses would become

increased velocity in the regions where the streamtube so large that the correct dynamical equations could not
width is narrowed, and decreased velocity where it is be ignored. Also, this region is not relevant to our basic
broadened. The velocities of the incompressible fluid problem since it includes the crystal which we tempo-
must therefore be adjusted inversely to the new.width of rarily ignored. The domain for using the approximation

the streamtube. For example, at P'l the 2-D velocity can be terminated as follows: We expect that the two

O G D K R 0.3 - Computed at Iocation"lO"

o

"-_E 0.2 if_/ _ Analysis at P_
',\11111 I °"
i\ ?i i0.2

'L__IF__J Io ' ' ' ' '
F 0 H 0 100 200 300 400 500

Secs.

Figure 6.--Geometrical adjustment of the flow by mass
conservation. Figure 7.--Step-function transient.



positions for maximal velocity in the wedge flow will which for our problem has the low value about
not be significantly displaced from the locationsPl and
P_ determined from the 2-D flow. We will therefore Nn = 24. (I 1)
retain results from the mass-conservation argument up

to the point P_ where we will take the velocity to be a We will also associate this value with our original
maximum. From there, a simple linear interpolation problem shown in Fig. 1, since for that type of
can be made to the crystal surface locationXwhere the container-and-crystal geometry, a Rayleigh number
velocity is known to be zero. definition is not standardized. This very low value of

24 guarantees that each analytical solution used in
this analysis is very accurate.

Discussion of Results Fig. 8 reproduces the computational results in [6]
for the direction of the velocity vectors in the steady

Our analysis was finished months before any corn- rotationally-symmetric flow in Fig. 3, but the direction

purer results were available, but computational analysis of the acceleration vector is here taken horizontally to
was later requested and completed (Spradley et al. [6]) the left. After a 90 ° rotation, this figure becomes the

on the rotationally symmetric flow of Fig. 2, by mirror image of Fig. 3. We note the computed sense of
considering the flow in Fig. 3 in terms of 2 space vari- circulation agrees with our assumption, viz. in the
ables plus time in spherical coordinates. In the numeri- direction of Egnear the crystal, and oppositely near the
cal computation, a cylindrical crystal of same volume outer boundary. The computed position of C of the
was included, but not its support rod. For comparison center of circulation where the velocity vanishes is seen
the solid curve in Fig. 7 is the computer result for the to be very close to our predicted location C'. Fig. 9
step-function transient evaluated at location "10" on reproduces from [6] the corresponding computational
Fig. 9 (the maximum velocity location), and the results for the velocity magnitudes in the steady flow.
computed half-time is 70 secs. Our estimate in (6) was This shows the maximum velocity at location "10" to be
84 secs. 0.23 micron/sec, and is very close to our predicted

The Rayleigh number Nn for the models in Fig. 5 is point P_; and it shows 0.08 micron/sec at the position
defined as of our point P_. The slight displacement of location

"10"
2ApD3 (10) from the axis OD is probably numerical error

Nx = eg " pw rather than an indication of any flow asymmetry.

VI'LOCITY VECIOR5 T[M[ 1500.0
WR× : .f]O002376 o

o" • • • J f _. dF ,

/', - . . • . i

/ • _ _. _ _ 4---. _----- "L---- "l.---- _ _ _ _ " ! ,_

/ ;::__.. --'7"--'------.i. ..... I I
0

Figure 8.--Lockheed simulation of Lal experiment--velocity vectors at steady flow.
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0

Figure 9.--Lockheed simulation of Lal experiment--velocity map. Velocity magnitudes at steady flow.

Fig. 10 shows our results (dashed line) for the °2I-[i

steady-state velocity distribution along line OXD com-
pared with the numerical results (solid line). This
comparison is based in both approaches upon the o.1

rotationally symmetric convection defined by the model Crystal .__"_ I_
in Fig. 2. o_

These dimensional final results for the specific cell _ o /

analyzed here can immediately be transformed, if o !
desired, into dimensionless form for application to E i

other sizes of cell-and-crystal of similar geometry, with ._ !
different AT, eg, and liquids, by using the same _-o.1
parameter groups given in (4) and (5), and subject to
the known restriction on size of the Rayleigh number as
defined in (10). o_

The replacement of the cubical model (Fig. 1) by the
equal-volume spherical model (Fig. 2) is the only step
in our analysis which cannot be supported by an

argument based upon some known results or proce- at_ °i2 °i4 . 01"6 0i8

dures; it is an assumption fo r 3-D flow at low Rayleigh o x Pl c' P'2 o
number made by analogy with the known equal-area Points
results for 2-D flow. Numerical results are not yet avail-

able for the slightly non-symmetric flow created by the Figure 10.--Velocity distribution along radius OD.
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model in Fig. 1 with the cubical container and the crystal combined is to reduce peak velocity but to speed up the
support. This will be a much more difficult and costly response time, compared with the reference model.
computation which must use 3 independent space The results for the steady-state velocities and the
variables plus time. It is anticipated, however, that a response time t_ to a step-function eg will now permit
complete 3-D computational analysis will yield flow construction of the transient solutions at any point
patterns and maximum velocities which will differ very along OD caused by any arbitrary, time-varying accel-
little from the approximate results we have already eration, following the procedure presented in [3].

obtained. The rough and partly heuristic analysis described
here was undertaken to obtain preliminary quantitative
estimates of the thermal convection to be expected in
this specific MPS experiment. Since computer results

Coneluslons subsequently became available for the Figure 2 model
which confirmed the accuracy of our approximate

Our quantitative results can be interpreted better by analysis, this description of our approach has been
making a comparison with the convection in a more made available so that other complicated MPS geom-

commonly used model (with the same specified param- etries can be analyzed easily and quickly for preliminary
eters) as follows: If we imposed the AT= 10°C predictions useful in engineering planning. In partic-

between the left and right faces of the cube in Fig. 1 ular, an application to thermal convection in micro-
(without crystal or support) and neglect the small, local gravity for cylindrical float-zones is in progress.
effect of drag from the front and back faces, the
resulting 2-D steady convection would have [3] peak

Referencesvelocity vss =0.5 micron/see, and t_ = 140 sees.max

By comparison, results presented here for the Fig. 2 [1] G. K. Batchelor, Quart. Appl. Math., Vol XII, No. 3
model are 0.22 to 0.25 micron/see and 70 to 84 sees., (1954)
respectively, which constitute more than 50% reduction [2] S. Weinbaum, J. Fluid Mech., Vol 18 (1964)
in velocity, but with a response time twice as rapid, [3] R. F. Dressier, J. Crystal Growth, 54 (Sept. 1981)
compared with the standardized model. [4] S. J. Robertson & L. W. Spradley, Tech. Report D-

The model in Fig. 1 or 2 differs in three basic 697821, Lockheed Missiles and Space Co.,Huntsville,
respects from our standard: (1) its lateral surface (the AL (Aug. 1980)
crystal) where the AT is imposed has much smaller [5] L. W. Spradley, private communication. To appear in
area which lowers the convective velocities, (2) its Lockheed Tech. Report D-784759.
linear dimension OD within which the circulation cell [6] L. W. Spradley, L. A. Nicholson, & S. J. Robertson,

Tech. Report D-784480, Lockheed Missiles and Space
'is confined is much smaller, which reduces the velocity, Co., Huntsville, AL (Aug. 1981 )
but speeds up the response time, (3) the rotational [7] M. J. Lighthill & G. B. Whitham, Proc. Royal Sot., A
symmetry in the flow, because of the wedge effect, 229 (1955)
increases velocities near the crystal where the peak [8] G. B. Whitham, Linear & Non-Linear Waves, John
velocity occurs. The overall result of these three effects Wiley & Sons, New York (1974)
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